Stephen Ferro

stephenferro2024@u.northwestern.edu • 1-847-471-8561 • linkedin.com/in/scferro • github.com/scferro • scferro.github.io

EDUCATION

Northwestern University, Evanston, IL Expected Graduation: December 2024 **Master of Science in Robotics** GPA: 3.6/4.0 Purdue University, West Lafayette, IN Graduated: May 2018 Bachelor of Science in Mechanical Engineering; Minor in Economics, Certificate in Entrepreneurship and Innovation

RELEVANT SKILLS

Software Development: Python, C++, C, Git, Linux, Unit Testing, Docker, Matlab, JAX, CMake, PyTorch Robotics: Robot Operating System (ROS/ROS 2), Kalman Filter, Particle Filter, RRT, A-Star, Simultaneous Localization and Mapping, Navigation 2, Isaac Sim, Nvidia Jetson, Movelt, Visual Odometry, CAN Bus, Sensor Fusion, Path Planning Computer Vision: OpenCV, Stereo Vision, Visual SLAM, Image Processing, Feature Detection, Semantic Segmentation Machine Learning: Vision-Language-Action Models, Reinforcement Learning, Deep Learning, Convolutional Neural Networks Design: CAD (SolidWorks/Creo/ProE/Fusion360/Inventor), CAM (Fusion360), FEA (SolidWorks, Creo), PCB Design (KiCAD)

WORK EXPERIENCE

SmoothAg

Lead Robotics Software Engineer

Engineered algorithms to merge point cloud and odometry from four Zed cameras for use in navigation and obstacle avoidance

September 2024 – Present; Chicago, IL

July 2022 – August 2023; Chicago, IL

- Led development of firmware for robot power distribution module using C++ to control feeder, lights, and more over CAN bus
- Developed GUI tools for creating and executing waypoint paths in simulation and on the real robot June 2024 – August 2024; Chicago, IL

Robotics Software Engineering Intern

- Architected navigation stack for the RanchRover using ROS 2 Navigation 2, incorporating custom behavior trees and planner
- Created solution for fusing local odometry data from Zed camera with GNSS feedback using an EKF for precise robot navigation
- Developed efficient ROS 2 drivers for communicating between Jetson Orin AGX, engine ECU, and other hardware over CAN bus

SKF USA

Product Design Engineer for Slewing Rings

- Designed custom slewing bearings with PTC Creo for demanding applications in the wind energy and rail industries
- Served as subject matter expert for design and application of wind turbine pitch and yaw bearings
- Conducted raceway and bolting analyses to optimize bearing designs, ensuring compliance with customer specifications
- **Application Engineer for Industrial Market** June 2018 – July 2022; Elgin, IL and Lansdale, PA
- Provided comprehensive support to agriculture, robotics, and other industrial customers in all aspects of bearing system design
- Worked closely with customer engineering teams to design optimal thin section bearings for high-precision robotics applications

PROJECT WORK

Hu	Iman-Robot Interaction with ECG Sensors and Vision Language Model (C++, ROS 2, Python)	Sept 2024 – Present
•	Developed system for teaching a Franka Panda to execute unseen multistep manipulation tasks us	ing Octo vision-language-
	action model with custom fine tuning, guided by demonstration images and language prompts	
•	Integrated live data from ECG sensor with the action model, allowing the robot to complete tasks colla	boratively with a human
Rea	al-Time Stereo Visual Odometry from Scratch (Python, OpenCV)	April 2024 – June 2024
•	• Engineered and tested a real-time visual odometry algorithm for accurate 3D position tracking using a RealSense stereo camera	
 Performed in-depth comparison of different feature detection methods including SIFT, ORB, and SuperPoint 		
Rei	inforcement Learning for Quadruped Locomotion (Python, PyTorch)	May 2024 – June 2024
•	Trained a quadruped robot using Soft Actor-Critic (SAC) to achieve stable locomotion in a MuJoCo simulation via OpenAI Gym	
•	Fine-tuned SAC hyperparameters to optimize gait and stability, resulting in smooth movement through	the environment
Ro	bot Arm Block Sorting with Active Human Feedback (C++, ROS 2, PyTorch, OpenCV)	March 2024 – June 2024
Ro •	bot Arm Block Sorting with Active Human Feedback (C++, ROS 2, PyTorch, OpenCV) Created ROS 2 packages to control a Franka Panda arm for adaptive sorting using any sorting method (
		color, shape, etc.)
•	Created ROS 2 packages to control a Franka Panda arm for adaptive sorting using any sorting method (color, shape, etc.) eedback
•	Created ROS 2 packages to control a Franka Panda arm for adaptive sorting using any sorting method (Created and implemented a dynamic PyTorch neural network capable of real-time learning from user f Utilized MoveIt for advanced robot control, incorporating a depth camera near the gripper for accurate	color, shape, etc.) eedback
•	Created ROS 2 packages to control a Franka Panda arm for adaptive sorting using any sorting method (Created and implemented a dynamic PyTorch neural network capable of real-time learning from user f Utilized MoveIt for advanced robot control, incorporating a depth camera near the gripper for accurate	color, shape, etc.) eedback e block manipulation nuary 2024 – March 2024
•	Created ROS 2 packages to control a Franka Panda arm for adaptive sorting using any sorting method (Created and implemented a dynamic PyTorch neural network capable of real-time learning from user f Utilized Movelt for advanced robot control, incorporating a depth camera near the gripper for accurate itonomous Race Car Robot Build (C++, ROS 2)	color, shape, etc.) eedback e block manipulation nuary 2024 – March 2024 rith 2D lidar technology
• • Au	Created ROS 2 packages to control a Franka Panda arm for adaptive sorting using any sorting method (Created and implemented a dynamic PyTorch neural network capable of real-time learning from user f Utilized Movelt for advanced robot control, incorporating a depth camera near the gripper for accurate Itonomous Race Car Robot Build (C++, ROS 2) Created ROS 2 packages using C++ to map and plan racetracks through hallways using SLAM Toolbox w Developed a high-fidelity robot simulation in Isaac Sim to facilitate rapid testing and iteration of new fu	color, shape, etc.) eedback e block manipulation nuary 2024 – March 2024 rith 2D lidar technology
• • Au	Created ROS 2 packages to control a Franka Panda arm for adaptive sorting using any sorting method (Created and implemented a dynamic PyTorch neural network capable of real-time learning from user f Utilized Movelt for advanced robot control, incorporating a depth camera near the gripper for accurate Itonomous Race Car Robot Build (C++, ROS 2) Created ROS 2 packages using C++ to map and plan racetracks through hallways using SLAM Toolbox w Developed a high-fidelity robot simulation in Isaac Sim to facilitate rapid testing and iteration of new fu	color, shape, etc.) eedback e block manipulation nuary 2024 – March 2024 with 2D lidar technology unctionalities nuary 2024 – March 2024